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A B S T R A C T   

Identifying and comparing plant growth-promoting traits (PGPT) within whole-genome and metagenomic 
sequencing data can significantly advance agricultural research and promote sustainable crop production. This 
study introduces PGPg_finder, a comprehensive pipeline designed to annotate and compare PGPT from both 
whole-genome and metagenome sequencing datasets. This pipeline utilizes direct sequence annotation alongside 
de novo assembly methods to accurately detect PGPT. By cross-referencing sequences from the PLaBAse data-
base, it identifies and quantifies the presence of these genes within the original datasets, facilitating an intuitive 
comparison of the abundance and distribution of PGPT across various samples. We evaluated the performance of 
PGPg_finder by analyzing genomes from five rhizobacterial strains: Paenibacillus vini, Paenibacillus polymyxa, 
Fictibacillus sp., Brevibacillus agri, and Bacillus cereus, and also metagenomic samples from bulk soils subjected to 
forest-to-pasture conversion in the Amazon rainforest. The genomic workflow revealed several genes associated 
with substrate utilization, abiotic stress neutralization, phosphate solubilization, and iron acquisition. It also 
identified genes unique to specific lineages, including those associated with colonization and plant-derived 
substrate usage in P. polymyxa, quorum sensing response and biofilm formation in P. vini, heavy metal detoxi-
fication and nitrogen acquisition in B. agri, and spore production and neutralizing biotic stress in B. cereus. The 
strain Fictibacillus sp. presented several unique genes related to surface attachment, stress response, xenobiotic 
degradation, phosphate solubilization, and phytohormone production. The use of PGPg_finder highlights its po-
tential to uncover novel inoculants and strains. The metagenomic workflow distinguished plant-growth pro-
motion gene profiles between soils from the Amazon rainforest and pasture, with the latter showing a profile 
more aligned with simple carbohydrate consumption, abiotic stress tolerance, motility and chemotaxis, and 
phosphorus mineralization. Native forests exhibited a profile associated with the degradation of complex organic 
matter, oxidative stress tolerance, xenobiotic degradation, bactericidal activity, iron acquisition, and volatile 
pathways. These findings underscore the effectiveness and sensitivity of PGPg_finder in accurately identifying and 
comparing PGPT genes, highlighting both commonalities and variations across samples. The application of this 
pipeline has the potential to significantly facilitate the identification of plant growth-promoting microbes.   

1. Introduction 

The relationship between plants and soil microorganisms is ancient 
and can be traced back to the terrestrialization process of ancestral 
plants and has accompanied its evolution and diversification (De Vries 

and Archibald, 2018; Heckman et al., 2001; Vandenkoornhuyse et al., 
2015; Delaux and Schornack., 2021). Plants can transfer up to 40% of 
the carbon fixed through photosynthesis into the soil directly next to the 
roots (i.e., the rhizosphere), making this small zone one of the most 
resource-rich habitats of the soil (Bais et al., 2006; Pieterse et al., 2014; 
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Gherardi and Sala, 2020). In this environment, several genera of mi-
croorganisms are not only able to consume the molecules exuded by the 
roots. Still, they can also provide essential services and resources to the 
plants, including enhanced water and mineral uptake, nitrogen fixation, 
and protection from pathogens (Lugtenberg and Kamilova, 2009). As a 
result, these rhizospheric microbes can alleviate a wide range of (a)bi-
otic stresses, directly contributing to increased plant growth, commonly 
referred to as plant growth–promoting rhizobacteria (PGPR). Over the 
last few decades, the inoculation of different PGPRs has gained accep-
tance and prominence in agriculture as a biotechnological resource 
(Waltz, 2017; Santos et al., 2019). However, research has advanced from 
culture-dependent studies to culture-independent and high-throughput 
molecular approaches, such as amplicon sequencing (Langille et al., 
2013), whole-genome sequencing (Jones and Good, 2016), and shotgun 
metagenomic and metatranscriptomic sequencing (Mendes et al., 2018). 
These techniques have shifted the view of the plant microbiome towards 
a more complex process with multiple pathways and genes involved 
(Wang et al., 2024). These tools are now widely used to characterize the 
genetic potential of the rhizosphere microbial communities (Kwak et al., 
2018) and have changed the view of plant growth promotion into a more 
complex trait that is often the net result of changes in the whole rhizo-
sphere microbial community structure and function (Carrión et al., 
2019). 

Whole-genome and metagenome sequencing are sophisticated mo-
lecular approaches able to unravel the structure, composition, and 
function of complex microbial communities through the identification of 
the potential pathways and genes of the rhizosphere microorganisms 
related to plant-growth promotion (Hu et al., 2022; Sun et al., 2021). 
Likewise, metatranscriptomic data can reveal processes occurring in the 
rhizosphere beyond the genetic potential, accurately reporting the 
active pathways and expressed genes (Mendes et al., 2018). Different 
studies have predicted rhizosphere microbial community functions by 
annotating predicted genes against several well-established databases. 
However, these functional databases are not dedicated to plant-growth 
promotion and lack a concise and curated list of genes related to 
plant-growth promotion. 

Several databases have been established for other purposes, target-
ing specific genes associated with nitrogen, phosphorus, sulfur cycling, 
and methane (Qian et al., 2022; Tu et al., 2019; Yu et al., 2021; Zeng 
et al., 2022). Others can provide complete whole-genome annotation, 
including Prokka (Seemann, 2014), RASTtk (Brettin et al., 2015), and 
DRAM (Shaffer et al., 2020). Recently, the PLant-associated BActeria 
web resource (PLaBAse) has developed a vast database for genomic 
annotation and prediction of plant-associated microbial genes (Patz 
et al., 2021, 2024). However, despite being a valuable resource for 
predicting genes that promote plant growth, researchers frequently 
encounter the need to engage in time-consuming and intricate processes 
for assembly, annotation, and data visualization. 

Here, we developed the software named PGPg_finder, which contains 
a comprehensive and easy-to-use pipeline to infer and compare plant- 
growth-promoting genes and pathways in whole-genome, meta-
genome, and metatranscriptome data. PGPg_finder greatly assists in 
annotating user data, summarizing and curating results, and directly 
using the PLaBAse database to identify known microbial-mediated plant 
growth promotion processes. As a modular pipeline, users can annotate 
genomes and metagenomes in three different workflows, and the output 
results consist of a summary of more than 800 relevant PGPTs. We also 
applied PGPg_finder to real-world metagenomic and whole-genome data, 
demonstrating this tool’s actual and potential application for future 
studies. The broad-scale application and validation of PGPg_finder could 
accelerate future agricultural research and lead to sustainable practices. 

2. Material and methods 

2.1. The main procedure of PGPg_finder 

PGPg_finder was implemented in Python 3.7.12 and Bash 5.1.16 and 
uses the bioinformatic tools in Table 1. The GitHub repository describes 
all functions and prerequisites for running the pipeline (https://github. 
com/tpellegrinetti/PGPg_finder). The main script “PGPg_finder.py” must 
be executed to initiate the analysis, serving as a critical link between the 
researcher and the desired analytical outcomes. By executing the com-
mand python “PGPg_finder.py -h", one can access the comprehensive 
functionalities and workflows integrated into the pipeline, along with 
instructions for its application. Initially, it is necessary to provide pa-
rameters such as the workflow (-w), the reads or assembly folder (-i), the 
output folder (-o), the number of threads (-t), and the mode of sensitive 
analysis (-m). The PGPg_finder pipeline encompasses three distinct and 
efficient workflows: genome_wf, metafast_wf, and meta_wf. The workflows 
were explicitly developed to address various research objectives, as 
illustrated in Fig. 1. 

2.2. Genomic annotation of plant growth promotion traits (genome_wf) 

The genome_wf workflow was engineered to analyze plant growth- 
promoting genes (PGPG) within genomic datasets through a structured 
and sequential process. This process starts by identifying genomic files 
in various formats, including fasta, fa, or fna, sourced from a specified 
directory. Following this initial step, the pipeline employs Prodigal for 
gene prediction (Hyatt et al., 2010). Then, DIAMOND v.2.1.8.162 is 
used as an alignment tool for sequence annotation through its blastx 
function, ensuring high efficiency (Buchfink et al., 2021). The command 
allows for the optimization of the workflow speed through the selection 
of multiple threads. DIAMOND facilitates rapid and accurate alignments 
against the genome database from PLaBAse – PGPT-db, accessible via 
the PLaBAse website (https://plabase.cs.uni-tuebingen.de/pb/down 
load.php) (Patz et al., 2021, 2024). The outcome of the genome_wf 
workflow is quantified as the count of gene hits, indicating correspon-
dences between the sequences in PGPT-db and the genomic sequences 
analyzed. 

The ensuing stage involves processing and compilation of the results 
into comprehensive tables and heatmaps for enhanced interpretability. 
The results are organized into folders containing tables of both 

Table 1 
List of tools used in the PGPg_finder pipeline.  

Tool Task Repository 

Python v.3.10.12 Script Structure  
DIAMOND v.2.1.8 Sequence 

Annotation 
https://github.com/bbuchfink/ 
diamond 

Prodigal v.2.6.3 Gene Prediction https://github.com/hyattpd/Prod 
igal 

Trimmomatic 
v.0.39 

Quality Control https://github.com/usadellab/Tr 
immomatic 

PEAR v.0.9.6 Sequence Assembly https://github.com/tsee 
mann/PEAR 

MEGAHIT v.1.2.9 Metagenome 
Assembly 

https://github.com/voutcn/megahit 

Bowtie v.2 2.5.1 Read Aligner https://github.com/BenLangmead/ 
bowtie2 

BBMap v.39.01 Coverage 
Calculation 

https://sourceforge.net/projec 
ts/bbmap/ 

biom-format 
v.2.1.15 

Data Manipulation https://github.com/biocore/bi 
om-format 

Pandas v.2.0.3 Data Manipulation https://github.com/pandas-dev/ 
pandas 

Numpy v.1.25.0 Data Manipulation https://github.com/numpy/numpy 
Matplotlib v.3.7.1 Data Manipulation https://github.com/matplotlib/mat 

plotlib 
Seaborn v.0.12.2 Data Visualization https://github.com/mwaskom/s 

eaborn  
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normalized and non-normalized matches. Normalization occurs through 
the ratio of PGPG counts to the total hit counts, providing a measure of 
gene relative abundance. This structured presentation of data facilitates 
straightforward interpretation and comparison, ensuring accessibility 
for further analytical endeavors. 

2.3. Metagenomic annotation of plant growth promotion traits 
(metafast_wf and meta_wf) 

Two distinct strategies have been formulated for sequence analysis 
within metagenomes in these workflows. The metafast_wf workflow 
provides a rapid approach to sequence annotation without requiring the 
assembly of metagenomic reads. In contrast, the meta_wf workflow 
adopts a more thorough but time-intensive strategy, encompassing read 
assembly and coverage assessment. 

The metafast_wf workflow is designed for quick annotation of unas-
sembled reads, eliminating the necessity for de novo assembly or 
coverage analysis. This expedited approach is suitable primarily for 
preliminary exploratory investigations. It accommodates various file 
formats, including fastq, fq, fq.gz, and fastq.gz for paired-end reads. The 
initial step starts by quality filtering the sequences with Trimmomatic 
v.0.39 (Bolger et al., 2014), following the merge of forward and reverse 
reads using PEAR v.0.9.6 (Zhang et al., 2013), resulting in unified se-
quences for subsequent annotation via the DIAMOND tool using the 
blastx function. Annotation within this workflow targets the mgPGPT-db 
database, featuring an extensive collection of genes from 
metagenome-assembled genomes and the AnnoTree database. This 
process yields a gene_counts.txt file, which is then utilized in Python 
scripts to compile and normalize data into tables for further analysis. 

The meta_wf workflow focuses on precision and annotating reads 
assembled into contigs. Firstly, sequences underwent quality control 
with Trimmomatic. After this, MEGAHIT v1.2.9 is employed for the de 
novo assembly of metagenomic reads, offering an efficient and precise 
assembly process (Li et al., 2016). Users can input their assemblies using 
the -a parameter for flexibility when choosing assembly tools. Following 
assembly, sequences are predicted for genes using Prodigal and anno-
tated with DIAMOND against the mgPGPT-db database using the blastp 
option. Additionally, nucleotide sequences are indexed with Bowtie2 
and mapped back to the assembly, with gene abundance calculated via 

BBMap’s pileup.sh script (Bushnell, 2014; Langmead and Salzberg, 
2012). Integrating alignment outputs with gene abundance data is 
facilitated through Python scripts, culminating in a consolidated file for 
each gene’s alignment and abundance within the sample. 

Both workflows, metafast_wf and meta_wf, generate a preliminary 
gene_counts.txt file. This data undergoes further refinement and anal-
ysis, employing similar processing techniques to ensure comprehensive 
and interpretable results. 

2.4. The use of PGPg_finder in rhizosphere-isolated genomes 

The performance of the PGPg_finder was assessed by annotating 
PGPG in five strains extracted from the rhizosphere of common beans 
cultivated in Amazonian Dark Earth, as documented by (Pellegrinetti 
et al., 2023; Mendes et al., 2019). These strains, earmarked for potential 
bioinoculant use, exhibit numerous genes linked to plant growth pro-
motion and pathogen resistance, notably against Fusarium oxysporum. 
The objective was to delineate the PGPG profile of each strain to gauge 
their suitability for bioinoculant applications. The genomic sequences 
include Paenibacillus vini (CENA-BCM001), Paenibacillus polymyxa 
(CENA-BCM002), Fictibacillus sp. (CENA-BCM004), Brevibacillus agri 
(CENA-BCM005), and Bacillus cereus (CENA-BCM007), hosted on the 
NCBI database under the bioproject PRJNA988090. This analysis was 
conducted on a server equipped with an Ubuntu 22.04 system, utilizing 
30 threads, powered by an Intel(R) Xeon(R) CPU E5-2696 v4 @ 2.20 
GHz with 44 CPUs and 128 GB of RAM. The comprehensive processing 
duration was meticulously logged by PGPg_finder, facilitating future 
comparative studies. 

2.5. The use of PGPg_finder in Amazon rainforest and pasture 
metagenomes 

To test our metagenome annotation pipeline, we evaluated the PGPG 
profile in eight metagenomes available in MG-RAST under the code 
mgp83361, which represents a study of Amazon rainforest under forest- 
to-pasture conversion (Pedrinho et al., 2019, 2020). We selected four 
samples of primary forest (F1 to F4) and four samples of pasture (F9 to 
F12). The native forest (NF) is located at 2◦51′23.9″S, 54◦57′28.4″W and 
is recognized as a well-maintained native forest, showing no evidence of 

Fig. 1. A flowchart of the major steps involved in running PGP_finder. The genome_wf (A) uses genomes or metagenome-assembled genomes in the fasta format 
provided by the user to search for genes associated with plant-growth promotion trait (PGPT) genes using the PLaBAse database. The meta_wf and metafast_wf (B) 
involve the metagenomic assembly using MEGAHIT or unassembled reads to detect PGPT genes. After this step, PGPT genes will be organized in a summary table and 
plotted by using heatmaps with the seaborn Python library (C). 
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fire, logging, or other forms of disturbance. In contrast, the pasture (P) is 
located at 3◦07′52.9″S, 54◦57′28.1″W representing an area that was a 
pasture established over 21 years ago. This area was developed 
following the clearing of native vegetation through slash-and-burn 
methods. It was subsequently replanted with non-native grass species 
(Urochloa spp.), now serving as a grazing ground for extensive livestock 
farming. 

Metagenome annotation’s efficacy was tested by utilizing metafast_wf 
and meta_wf for comparison time purposes. The compressed meta-
genomic data accounted for 13.7 Gb, an average of 218M reads. The 
computational analysis was executed on the same server as described 
above. The total processing time was recorded by the log file generated 
by PGPg_finder upon the final run of the workflow. 

2.6. Downstream analysis of PGPG metagenomic and genomic results 

Data derived from metagenomic and genomic datasets were 
analyzed using R and RStudio alongside the SHAMAN pipeline for in- 
depth exploration (Volant et al., 2020). A particular focus was placed 
on visualizing the distribution of PGPG within isolated bacterial ge-
nomes through heatmaps generated on the SHAMAN platform, consid-
ering the quantity of PGPG annotated per genome as an indicator of 
functional richness. This metric was visually represented in bar plots for 
straightforward comparison. Furthermore, the investigation into 
orthologous clusters across bacterial genomes was facilitated by 
OrthoVenn3, highlighting the unique and common genes among the 
samples (Sun et al., 2023). Genes specific to each genome underwent a 
secondary annotation process via PGPg_finder’s genome_wf workflow, 
with the results depicted in pie charts through ggplot2 for an intuitive 
understanding of genomic composition (Wickham, 2011). 

In the realm of metagenomic analysis, PGPG annotations were 
scrutinized using both SHAMAN and R. The analysis extended to 
comparing PGPG abundance between primary forest and pasture sam-
ples, employing Principal Coordinate Analysis grounded in Bray-Curtis 
distance and substantiated by PERMANOVA to ascertain statistical sig-
nificance at a threshold of p < 0.05. Additionally, the Wilcoxon test, 
applied at the same significance level, helped identify statistical dis-
crepancies between the two environments, with outcomes illustrated in 
bar charts emphasizing log2 fold changes. PGPG diversity within the 
samples was quantified by the observed number of PGPG functions, 
indicative of functional richness, and through the Shannon Index to 
assess functional diversity. Differential abundance analysis of PGPG at 
the function level was conducted in STAMP and subsequently visualized 
in R, offering a nuanced perspective on the functional landscape pre-
sented by the PGPG annotations (Parks et al., 2014). 

3. Results and discussion 

3.1. General information of PGPg_finder 

Here, we present the PGPg_finder, an innovative, easy-to-use pipeline 
developed to infer and contrast the prevalence of genes and pathways 
related to Plant-Growth Promotion Genes (PGPG) in both genomic and 
metagenomic datasets. As we grapple with global issues such as food 
security and climate change, the role of microorganisms in fostering 
plant growth is increasingly recognized in scientific research (Fadiji 
et al., 2022, 2022). PGPTs hold the potential to enhance crop yields and 
ameliorate soil fertility under stressful conditions (Fadiji et al., 2022). 
Thus, the need for efficient computational tools to identify and catego-
rize PGPGs in genomes and metagenomes is growing, and the intro-
duction of this pipeline serves as a crucial step toward fulfilling this 
need. The impact of PGPg_finder on sustainable agricultural practices 
could be profound. 

The PGPg_finder is based on three workflows: genome_wf, metafast_wf, 
and meta_wf. Genome_wf is explicitly designed to detect PGPG in as-
semblies, a process following protein prediction and gene annotation 

through DIAMOND alignment. In contrast, metafast_wf provides a rapid 
method to annotate PGPG in metagenomic reads without de-novo as-
sembly, albeit with a trade-off in precision compared to meta_wf work-
flow. The third, meta_wf, is a comprehensive, precise workflow 
encompassing de novo assembly, protein prediction, gene annotation, 
and mapping, with an integrated coverage calculation. The de novo 
assembly stage increases the workflow precision due to generating 
sizable contigs, thus minimizing errors compared to unassembled reads. 
Collectively, these workflows prioritize both speed and efficiency, uti-
lizing Prodigal for protein prediction (except in metafast_wf) and 
employing a dedicated database, PLaBAse, for executing DIAMOND 
annotations (Patz et al., 2021, 2024). 

In a representative run, we processed five genomes in 4 min, show-
casing different PGPG annotated numbers (Table 2). The genomes pre-
sented contigs number between 16 and 111 and total length between 
4.96 and 5.71 million of base pair. A total varying between 1543 and 
1711 PGPG were identified in the genomes. CENA-BCM004 was the 
genome with the most PGPG found, while CENA-BCM001 had the lowest 
number of genes annotated. Considering the metagenome workflow, 
eight metagenomes were processed, totaling approximately 13.7 Gb, 
representing Primary Forest (PF) and Pasture (PS). The metafast_wf took 
267 min, while meta_wf took 478 min. More than 218 million sequences 
were annotated with 5463 and 5186 PGPG in PF and PS, respectively 
(Table 2). 

3.2. Rhizosphere bacterial isolates present a wide range of PGPG 

Genomic analysis has revealed a broad spectrum of PGPG in 
rhizosphere-isolated bacteria, demonstrating significant functional di-
versity. These rhizobacteria enhance plant growth, pathogen control, 
and abiotic stress resistance, contributing to plant health and resilience 
through mechanisms like phosphate solubilization and phytohormone 
production (Leontidou et al., 2020; Saeed et al., 2021). The classification 
of PGPG into specific categories revealed variability within bacterial 
genomes, with critical functions including “Colonization-Plant Derived 
Substrate Usage”, “Abiotic Stress Neutralization”, “Phosphate Solubili-
zation’’, and “Iron Acquisition’’ (Fig. 2A). Additionally, capabilities 
such as “Plant Vitamin Production’’, “Cell Envelope Remodeling”, 
“Universal Stress Response”, and “Xenobiotics Biodegradation’’ 
emphasize the complex roles of rhizobacteria in the ecosystem. These 
functionalities are essential for rhizobacterial survival and plant nutri-
tion, as they rely on plant exudates and contribute to plant growth by 
synthesizing metabolites and solubilizing nutrients, significantly 
impacting plant health and growth metrics (Majeed et al., 2015; Mendes 
et al., 2013). 

Enumerating and detecting PGPG in metagenomes is challenging due 
to database limitations, computational limitations, and available pipe-
lines. Here, the variability and number of detected PGPG among the 
genomes were shown as a valuable metric for assessing bacterial po-
tential for plant growth promotion (Fig. 2B; Suppl. Table 1). The 
Orthovenn3 analysis identified 1211 universally shared PGPG ortholo-
gous clusters across the bacterial strains, indicating a core functionality, 
while each strain also presented between 56 and 163 unique clusters, 
highlighting their distinct genetic diversity (Fig. 2C). Analyzing core and 
exclusive functions within bacterial genomes provides a reliable method 
for predicting inoculation success in plant hosts and identifying key 
traits such as abiotic and biotic resistance or enhancement of plant 
nutrition. For instance, many unique genes linked to “Colonization-Plant 
Derived Substrate Usage” were identified in CENA-BCM002 (Paeniba-
cillus polymyxa). At the same time, functions related to “CE-Quorum 
Sensing Response and Biofilm Formation’’ were found in CENA- 
BCM001 (Paenibacillus vini), indicating a direct relationship between 
these bacteria and their plant hosts. Research has already highlighted 
the effectiveness of P. polymyxa in forming biofilms (Timmusk et al., 
2005). It produces biofilm polysaccharides that can antagonize patho-
gens (Timmusk et al., 2019) and absorb heavy metals (Govarthanan 
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et al., 2016). Moreover, a recent study demonstrated the effectiveness of 
P. polymyxa inoculation as a plant growth promoter by enhancing ni-
trogen and iron levels in common bean plants (da Cunha et al., 2024). 

Another example was the CENA-BCM004 (Fictibacillus sp.), which 
stood out for its high number of unique PGPGs, including “Colonization 
Surface Attachment”, “Universal Stress Response”, “Xenobiotics Degra-
dation”, “Phosphate Solubilization’’, and “Phytohormone-Cytokinins 
and Derivate Production”. A recent study demonstrated the versatile 
metabolic and functional richness of the CENA-BCM004, which is clas-
sified as a new species from the Fictibacillus genus called Fictibacillus 
terranigra (Pellegrinetti et al., 2024). Despite limited studies on using 
these genera as bioinoculants, some studies have evaluated their po-
tential as nematocidal control and arsenic resistance (Zheng et al., 
2017). CENA-BCM05 (Brevibacillus agri) was notable for genes linked to 
“Heavy Metal Detoxification” and “Nitrogen Acquisition’’. Interestingly, 
research with this genus corroborated our findings, illustrating the 

potential of B. parabrevis OZF5 in the remotion of metals such as Cr (VI) 
and Zn in experiments of bean growth in amended metal pots (Wani 
et al., 2023). Another study described the potential of B. panacihumi 
strain ZB1 to be used in biological treatment, where this strain was 
shown to remove nitrogen and heavy metals, including copper, sele-
nium, and cadmium (Er et al., 2018). Lastly, CENA-BCM007 (Bacillus 
cereus) was characterized by unique PGPG associated with “Neutralizing 
Abiotic Stress”, “CE-Spore Production”, and “Neutralizing Biotic Stress”, 
demonstrating the distinct functional capabilities and ecological niches 
these strains may occupy within the rhizosphere. This aligns with 
research describing the thermotolerance effect of B. cereus SA1 in soy-
beans and the production of antioxidant enzymes essential to the plant 
(Khan et al., 2020). Another study described the effectiveness of 
B. cereus YN917 used as a biocontrol agent since this strain presents 
biosynthetic gene cluster associated with plant promotion and anti-
fungal compounds, such as IAA, tryptophan, siderophores, and 

Table 2 
Comprehensive overview of various samples analyzed in the study, detailing their format, sequence number, average length, PGPG annotation, and the time taken for 
the analysis. The table includes samples from different environments and methods, such as Native Forest and Pasture. Additionally, it includes multiple samples of 
genomes and their corresponding PGPG annotations. The table also indicates the time taken for running each analysis, marked with asterisks, and a footnote provides 
clarifications on the workflows used for each sample: metafast_wf, meta_wf, and genome_wf.  

Sample Format Sequence Number Total Length (M) Average length (bp) PGPG Annotated Time running (min) 

Native Forest FASTQ 120590180  101 5463 267a 

478b Pasture FASTQ 97401088  101 5186 
CENA-BCM001 FASTA 55 5.71 103,858.2 1543 4c 

CENA-BCM002 FASTA 57 5.63 98,863 1661 
CENA-BCM004 FASTA 16 4.96 310,476.7 1711 
CENA-BCM005 FASTA 111 5.28 47,576.3 1632 
CENA-BCM007 FASTA 22 5.57 253,152.7 1603  

a Running in metafast_wf. 
b Running with meta_wf. 
c Running in genome_wf. 

Fig. 2. Overview of Plant-Growth Promotion Gene (PGPG) Abundance in genomes of Strains isolated from the rhizosphere of common bean A) A Heatmap exhibiting 
a general view of PGPGs in the genomes. B) PGPG Richness among the genomes. C) A heatmap displaying the abundance of PGPG genes among the different strains. 
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phenazine (Zhou et al., 2021). 

3.3. Contrasting plant-growth promotion genes in different land uses 

In metagenomic analysis, numerous methodologies and approaches 
for data analysis are available. However, the vast data size and the need 
for advanced bioinformatics skills and substantial computational re-
sources can pose significant challenges. In this work, we quantified the 
PGPG across soils from forest-to-pasture conversion to explore their 
differential profiles. Our findings reveal substantial differences between 
native forests and pasture samples, with pastures exhibiting greater 
PGPG diversity and richness. This variation in PGPG is followed by shifts 
in the soil microbial communities, where forest-to-pasture conversion 
leads to altered abundance and composition of critical microbial phyla, 
impacting nutrient cycling and soil health (Mendes et al., 2015a, b; 
Navarrete et al., 2015; Pedrinho et al., 2019). The observed changes in 
PGPG and microbial diversity revealed the impact of deforestation on 
the Amazonian soil biodiversity and function, highlighting the need for 
sustainable land management to preserve biodiversity and ecosystem 
functions (Mendes et al., 2015a, b; Pedrinho et al., 2020; Venturini et al., 
2022). 

Forest transformation into pasture is the most prevalent form of land- 
use change in the Brazilian Amazon (Nascimento et al., 2019). Studies 
have shown that these changes adversely affect vegetation cover and 
biogeochemical cycles, impacting soil microbial communities (Mendes 

et al., 2015a, b; Pedrinho et al., 2023; Venturini et al., 2022). However, 
research on changes in PGPG during this transition remains limited and 
warrants further exploration. In native forest soils, a higher abundance 
of PGPG associated with crucial functions was found, including oxida-
tive stress, xenobiotic degradation, bactericidal activity, root coloniza-
tion, iron acquisition, and volatile pathways. These findings shed light 
on the hidden potential of previously unexplored taxa in Amazonian 
Forest soils as a promising candidate for biotechnological investigations. 
Research in Amazon soils has discovered new fungal isolates capable of 
degrading glyphosate herbicide and Benzo(a)pyrene and showing 
tolerance to polycyclic aromatic hydrocarbons (Correa et al., 2021; 
Souza et al., 2017). A study on the Amazon River microbiome revealed 
exclusive functions associated with the degradation of rainforest organic 
matter, xenobiotic biodegradation, and secondary metabolism (San-
tos-Júnior et al., 2020). These findings underscore the untapped po-
tential of these underexplored ecosystems in terms of biotechnological 
applications. 

At the functional level (Fig. 3B), some genes were more abundant in 
Amazon soils than in pastures. We could infer that some genes are 
related to organic matter decomposition, nutrient cycling, horizontal 
gene transfer, and genome plasticity. For instance, genes such as cyaB, 
ABC transport, livK, plc, and OAR1 highlight the metabolic versatility 
required for decomposing complex plant-derived organic compounds and 
nutrient recycling in forest soils. To decompose and use the carbon 
deposited through litter deposition, the microbial communities of the 

Fig. 3. Overview of Plant-Growth Promotion Gene (PGPG) Abundance in Amazon Environments A) Heatmap Display: Exhibits a general view of significant PGPGs in 
different samples from two environments. B) Bar Chart Highlighting the variance in gene abundance between the two environments. C) Diversity and Richness 
Analysis: Showcases a Principal Coordinate Analysis for environmental comparison, along with a boxplot depicting Functional Richness and Diversity indices. 
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Amazon soils have to adapt to degrade complex polymers such as lignin 
and cellulose (Lammel et al., 2015). The prevalence of transposase and 
integrase/recombinase genes reflects the dynamic nature of microbial 
genomes in response to the complex forest environment, facilitating 
horizontal gene transfer and genome plasticity, which are crucial for 
microbial adaptation and evolution in heterogeneous soil environments. 

In pasture, genes related to carbohydrate and amino acid transport, 
abiotic stress neutralization, motility, chemotaxis, and phosphorus 
mineralization were more prevalent compared to native forests (Fig. 3A; 
Fig. 3B). The microbial community in pasture soils demonstrated 
adaptation to explore the niches created by the increase in topsoil root 
volume by pasture grasses, their root exudates, animal residues, and the 
inherent soil matrix. Forest-to-pasture conversions increase pH, avail-
able phosphorus, and exchangeable calcium and magnesium levels 
(Mendes et al., 2015a, b; Pedrinho et al., 2019, 2023). These changes are 
attributed to pasture management practices, such as liming and fertil-
ization, to enhance grass growth, which significantly alter soil chemistry 
and increase soil nutrient availability compared to forest soils. Genes 
associated with the exopolysaccharide biofilm development (mucR) and 
motility regulation and chemotaxis (mcp) were abundant in pasture soils 
compared to forest soils. These mechanisms enable microbes to colonize 
and adapt to the rhizosphere efficiently (Little et al., 2019; Whiteley and 
Lee, 2015). 

Moreover, genes associated with formate hydrogenase major subunit 
(fdwa), multiple sugar transport system (ABC_MS), and simple sugar 
transport system (ABC_SS) showed an increase in abundance, likely due 
to the rise in carbon lability through root exudation as most grass species 
of pastures have been reported to exudate large quantities of simple 
organic molecules (Kroeger et al., 2018). Another gene abundant in 
pasture was the molecular chaperone DnaK, which ensures protein sta-
bility under stress conditions and is vital for microbial resilience in 
fluctuating stressed environments. In such environments, severe 
drought stress can trigger microorganisms to produce enzymes and 
compounds that contribute to stress resistance, contributing to microbial 
community resilience and rhizosphere interactions (Tartaglia et al., 
2023). 

3.4. Future perspectives 

Looking ahead, the potential of PGPg_finder to revolutionize our 
understanding and utilization of microbial communities in agriculture is 
immense. Mining organisms in unexplored environments with the 
PGPG_finder tool can yield significant gains in isolating microorganisms 
capable of performing various agricultural, environmental, and 
ecological functions of interest. This approach harnesses the untapped 
potential of diverse habitats to discover organisms with novel capabil-
ities. Future developments could focus on expanding the database to 
include a more comprehensive array of plant-growth-promoting genes, 
enhancing the pipeline’s accuracy and efficiency. Integrating machine 
learning algorithms could predict the impact of specific microbial 
communities on plant health and yield, tailoring microbial inoculants to 
crops and environmental conditions. Ultimately, this could lead to a new 
era of precision agriculture, where microbial management strategies are 
integral to water management, nutrient use, and pest control, thereby 
ensuring sustainable food production in harmony with the environment. 

3.5. Conclusion 

In conclusion, the development and application of PGPg_finder rep-
resents a significant advancement in exploring microbial contributions 
to plant growth and soil health, particularly in the context of varying 
land uses such as pastures and native forests. By enabling a detailed and 
efficient analysis of Plant-Growth Promotion Genes (PGPG) within both 
genomic and metagenomic datasets, this pipeline not only enhances our 
understanding of microbial diversity and function but also underscores 
the vital role of microorganisms in nutrient cycling, stress resistance, 

and ecosystem sustainability. The insights from contrasting PGPG 
prevalence in different environments highlight the complex interactions 
between microbial communities and their habitats, offering valuable 
perspectives for sustainable agricultural practices and conservation ef-
forts. As we continue to face global challenges like climate change and 
food security, tools like PGPg_finder are crucial for harnessing the po-
tential of beneficial microorganisms to support resilient and productive 
ecosystems. 
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